Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667269

ABSTRACT

In the latest few decades, molecular docking has imposed itself as one of the most used approaches for computational drug discovery. Several docking benchmarks have been published, comparing the performance of different algorithms in respect to a molecular target of interest, usually evaluating their ability in reproducing the experimental data, which, in most cases, comes from X-ray structures. In this study, we elucidated the variation of the performance of three docking algorithms, namely GOLD, Glide, and PLANTS, in replicating the coordinates of the crystallographic ligands of SARS-CoV-2 main protease (Mpro). Through the comparison of the data coming from docking experiments and the values derived from the calculation of the solvent exposure of the crystallographic ligands, we highlighted the importance of this last variable for docking performance. Indeed, we underlined how an increase in the percentage of the ligand surface exposed to the solvent in a crystallographic complex makes it harder for the docking algorithms to reproduce its conformation. We further validated our hypothesis through molecular dynamics simulations, showing that the less stable protein-ligand complexes (in terms of root-mean-square deviation and root-mean-square fluctuation) tend to be derived from the cases in which the solvent exposure of the ligand in the starting system is higher.

SELECTION OF CITATIONS
SEARCH DETAIL